Standards-MiddleSchoolEngineeringDesign

From ArduinoInfo
Jump to navigation Jump to search

logo.png

MiddleSchool Engineering Design Standards


Quality science education is based on standards that are rich in content and practice, with aligned curricula, pedagogy, assessment, and teacher preparation and development. The K-12 Next Generation Science Standards have been developed through a collaborative, state-led process managed by Achieve. They are based on the Framework for K–12 Science Education developed by the National Research Council. They are arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education. The lessons, projects and tutorials we at YourDuino.com have created for students to learn about Arduino and electronics, are linked to the Next Generation Science Standards, Engineering Design section. We have included the standards here for you to use when you are planning lessons and workshops and we are working to link all our educational materials to these important standards.

MS.ETS1 Engineering Design

Students who demonstrate understanding can:{|

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

|- class="row2b" | colspan="3" | The performance expectations above were developed using [#framework the following elements from the NRC document A Framework for K-12 Science Education]: |- class="row3" | class="blue" | ==Science and Engineering Practices=====Asking Questions and Defining Problems===Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

| class="orange" |

Disciplinary Core Ideas=====ETS1.A: Defining and Delimiting Engineering Problems=

| class="green" | ==Crosscutting Concepts=====Influence of Science, Engineering, and Technology on Society and the Natural World===[1]

  • All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)
  • The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)

|- class="ff" | colspan="3" | Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include:Physical Science: [/msps3-energy MS-PS3-3]Connections to MS-ETS1.B: Developing Possible Solutions Problems include:Physical Science: [/msps1-matter-interactions MS-PS1-6], [msps3-energy MS-PS3-3], Life Science: [/msls2-ecosystems-interactions-energy-dynamics MS-LS2-5]Connections to MS-ETS1.C: Optimizing the Design Solution include:Physical Science: [/msps1-matter-interactions MS-PS1-6] |- class="ff" | colspan="3" | Articulation of DCIs across grade-bands:[/3-5ets1-engineering-design 3-5.ETS1.A] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3); [/3-5ets1-engineering-design 3-5.ETS1.B] (MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/3-5ets1-engineering-design 3-5.ETS1.C] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/hsets1-engineering-design HS.ETS1.A] (MS-ETS1-1),(MS-ETS1-2); [/hsets1-engineering-design HS.ETS1.B] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [hsets1-engineering-design HS.ETS1.C] (MS-ETS1-3),(MS-ETS1-4) |- class="ff" | colspan="3" | Common Core State Standards Connections:{| | class="head" colspan="2" | ELA/Literacy - |- ! RST.6-8.1 | Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! RST.6-8.7 | Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ETS1-3) |- ! RST.6-8.9 | Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) |- ! WHST.6-8.7 | Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2) |- ! WHST.6-8.8 | Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-ETS1-1) |- ! WHST.6-8.9 | Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2) |- ! SL.8.5 | Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-ETS1-4) |- | class="head" colspan="2" | Mathematics - |- ! MP.2 | Reason abstractly and quantitatively. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) |- ! 7.EE.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! 7.SP | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4) |} |}

MS.ETS1 Engineering Design

Students who demonstrate understanding can:{|

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

|- class="row2b" | colspan="3" | The performance expectations above were developed using [#framework the following elements from the NRC document A Framework for K-12 Science Education]: |- class="row3" | class="blue" | ==Science and Engineering Practices=====Asking Questions and Defining Problems===Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

| class="orange" |

Disciplinary Core Ideas=====ETS1.A: Defining and Delimiting Engineering Problems=

| class="green" | ==Crosscutting Concepts=====Influence of Science, Engineering, and Technology on Society and the Natural World===[2]

  • All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)
  • The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)

|- class="ff" | colspan="3" | Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include:Physical Science: [/msps3-energy MS-PS3-3]Connections to MS-ETS1.B: Developing Possible Solutions Problems include:Physical Science: [/msps1-matter-interactions MS-PS1-6], [msps3-energy MS-PS3-3], Life Science: [/msls2-ecosystems-interactions-energy-dynamics MS-LS2-5]Connections to MS-ETS1.C: Optimizing the Design Solution include:Physical Science: [/msps1-matter-interactions MS-PS1-6] |- class="ff" | colspan="3" | Articulation of DCIs across grade-bands:[/3-5ets1-engineering-design 3-5.ETS1.A] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3); [/3-5ets1-engineering-design 3-5.ETS1.B] (MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/3-5ets1-engineering-design 3-5.ETS1.C] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/hsets1-engineering-design HS.ETS1.A] (MS-ETS1-1),(MS-ETS1-2); [/hsets1-engineering-design HS.ETS1.B] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [hsets1-engineering-design HS.ETS1.C] (MS-ETS1-3),(MS-ETS1-4) |- class="ff" | colspan="3" | Common Core State Standards Connections:{| | class="head" colspan="2" | ELA/Literacy - |- ! RST.6-8.1 | Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! RST.6-8.7 | Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ETS1-3) |- ! RST.6-8.9 | Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) |- ! WHST.6-8.7 | Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2) |- ! WHST.6-8.8 | Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-ETS1-1) |- ! WHST.6-8.9 | Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2) |- ! SL.8.5 | Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-ETS1-4) |- | class="head" colspan="2" | Mathematics - |- ! MP.2 | Reason abstractly and quantitatively. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) |- ! 7.EE.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! 7.SP | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4) |} |}

MS.ETS1 Engineering Design

Students who demonstrate understanding can:{|

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

|- class="row2b" | colspan="3" | The performance expectations above were developed using [#framework the following elements from the NRC document A Framework for K-12 Science Education]: |- class="row3" | class="blue" | ==Science and Engineering Practices=====Asking Questions and Defining Problems===Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

| class="orange" |

Disciplinary Core Ideas=====ETS1.A: Defining and Delimiting Engineering Problems=

| class="green" | ==Crosscutting Concepts=====Influence of Science, Engineering, and Technology on Society and the Natural World===[3]

  • All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)
  • The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)

|- class="ff" | colspan="3" | Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include:Physical Science: [/msps3-energy MS-PS3-3]Connections to MS-ETS1.B: Developing Possible Solutions Problems include:Physical Science: [/msps1-matter-interactions MS-PS1-6], [msps3-energy MS-PS3-3], Life Science: [/msls2-ecosystems-interactions-energy-dynamics MS-LS2-5]Connections to MS-ETS1.C: Optimizing the Design Solution include:Physical Science: [/msps1-matter-interactions MS-PS1-6] |- class="ff" | colspan="3" | Articulation of DCIs across grade-bands:[/3-5ets1-engineering-design 3-5.ETS1.A] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3); [/3-5ets1-engineering-design 3-5.ETS1.B] (MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/3-5ets1-engineering-design 3-5.ETS1.C] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [/hsets1-engineering-design HS.ETS1.A] (MS-ETS1-1),(MS-ETS1-2); [/hsets1-engineering-design HS.ETS1.B] (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4); [hsets1-engineering-design HS.ETS1.C] (MS-ETS1-3),(MS-ETS1-4) |- class="ff" | colspan="3" | Common Core State Standards Connections:{| | class="head" colspan="2" | ELA/Literacy - |- ! RST.6-8.1 | Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! RST.6-8.7 | Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ETS1-3) |- ! RST.6-8.9 | Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) |- ! WHST.6-8.7 | Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2) |- ! WHST.6-8.8 | Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-ETS1-1) |- ! WHST.6-8.9 | Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2) |- ! SL.8.5 | Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-ETS1-4) |- | class="head" colspan="2" | Mathematics - |- ! MP.2 | Reason abstractly and quantitatively. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) |- ! 7.EE.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) |- ! 7.SP | Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4) |} |}

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.